SOAH DOCKET NO. 582-15-2082 TCEQ DOCKET NO. 2015-0069-MSW

APPLICATION OF 130	§	BEFORE THE STATE OFFICE
ENVIRONMENTAL PARK, LLC	§	OF
FOR PROPOSED PERMIT NO.	§	ADMINISTRATIVE HEARINGS
2383	§	

PROTESTANTS' EXHIBIT 4

PREFILED TESTIMONY OF

LESLIE HOLDER

ON BEHALF OF PROTESTANT EPICC

TABLE OF CONTENTS

[.	INTRODUCTION
II.	SUMMARY OF CONCERNS REGARDING PROPOSED LANDFILL
	3
Ш.	CONCLUSION8

INDEX OF EXHIBITS

Exhibit No.	Description
Exhibit 4-A	Email dated April 6, 2016 (with
	attachments)

1 I. INTRODUCTION 2 Q: Please state your name. 3 A: Leslie Holder. 4 Q: Please state your address. 5 A: 575 Comanche Way, Dale, Texas 78616. O: Please describe your occupation. 6 7 A: Legal Administrative Assistant. 8 Q: Are you a member of the organization Environmental Protection in the Interest of Caldwell County, or EPICC? 10 Yes. A: 11 What is the mission of EPICC? Q: 12 A: To promote the protection of the environment and quality of life in Caldwell County for ours and future generations. 13 14 Q: Please explain your role, if any, with the organization. 15 A: I am a board member of EPICC and participate in all board meetings and activities 16 by the organization. I am also webmaster of the EPICC website. My duties are to 17 manage the website and to respond to any comments, questions or requests that 18 may be posted on the website such as requests for yard signs, to sign petitions and 19 become members. 20 II. SUMMARY OF CONCERNS REGARDING PROPOSED LANDFILL

As a board member, are you familiar with the concerns of EPICC regarding 130

Environmental Park's application for a landfill permit?

21

22

Q:

- 1 A: Yes.
- 2 Q: How are you familiar with the concerns of EPICC?
- 3 A: I became a member of EPICC in late 2013. I was also involved in the formation
- 4 of EPICC as a non-profit organization and then later was elected to the position of
- 5 Treasurer. Shortly after that I assumed the duties of webmaster.
- 6 Q: Please describe EPICC's overall concerns with the application for the landfill
- 7 permit.
- 8 A: Threat to Residents Living in the Vicinity of the Landfill. My family and I live
- less than five miles from the proposed landfill site. And EPICC is comprised of
- many landowners who also reside within close proximity of the landfill site and in
- fact, whose property is adjacent to or across the street. EPICC's fears are based on
- extensive research by its members, and we have concluded that this landfill would
- adversely affect not only the health of people and livestock, but could put lives in
- danger. Ann Collier who lives directly across the street from the landfill site,
- 15 already suffers with respiratory ailments. With her compromised immune system,
- her health issues could be exacerbated by emissions from the landfill..
- 17 Traffic. Based on our research, we (EPICC members) have learned that the
- intersection at FM1185 and Hwy. 183 is considered to be one of the deadliest
- intersections in the State of Texas. [does she have a source for this?] The speed
- limit along Hwy. 183 is 60 miles per hour. As one approaches the entrance to the
- 21 landfill site traveling north along Hwy. 183, visibility suddenly drops off because
- 22 the road slopes downward. Therefore, garbage trucks exiting and entering the

1 highway would not be immediately visible until drivers come over the rise. I have 2 personally travelled along this stretch of the road on many, many occasions, and 3 am quite familiar with the slope of the highway and the visibility issues in this 4 area. Vehicles traveling at 60 miles per hour, coupled with slow-moving garbage 5 trucks entering and exiting the highway is a recipe for disaster. Eventually 6 hundreds of garbage trucks would be required to access the landfill, so I'm 7 concerned about the potential for an increase in serious traffic accidents. 8 Floodplain/Flooding. The potential for flooding exists as a large portion of this 9 site is a floodplain. I have personally driven past this site after a heavy rain and 10 have not only seen water gushing directly from the site, but have seen standing 11 water on the site for weeks after a heavy rain. I, and members of EPICC, are 12 concerned that the development of the landfill will result in an increase in the 13 potential for even greater flooding. Also, because the access road to the landfill 14 would have to cross a floodplain, I'm concerned about accessibility during major rain events. What if there is an emergency at the landfill during a flooding event, 15 16 and the road becomes inaccessible? Contamination of the nearby aguifers is 17 another major concern for members of EPICC. If the risk of contaminating our 18 aquifers exists - however small that risk may be - then that risk needs to be 19 eliminated. It's not worth it. 20 Trash Pile. It's my understanding that 130 Environmental Park intends to pile the 21

22

potential for contaminants to migrate from the landfill site through the air, . On windy days, trash could be blown for miles, in addition to the smell of rotting. toxic trash. If 130 Environmental Park decides to use alternative daily cover, instead of soil cover, which is an option they have left open in their application, then, the potential for windblown waste and odors would almost certainly increase. Finally, I am concerned about scavenging at the landfill site—scavenging by rodents, feral hogs, and birds. Feral hogs are a real problem in this area, and it is almost impossible to keep feral hogs out of one's property. Economic Suicide. Putting a landfill at this location where the potential for the greatest growth exists is economic suicide for Lockhart. Austin is one of the fastest growing cities in the United States and so Caldwell County is destined to benefit from this growth but only if we don't put a 175' high pile of unsightly trash at the north entrance to Lockhart. Property values will decrease and the kind of businesses that would positively add to our community, will choose to go elsewhere. Representatives for 130 Environmental Park have publicly stated that that properties in the vicinity of this landfill would actually increase in value, with no support for this claim at all. This shows this company's brashness to make ridiculously false statements on record and assume that Caldwell County residents are so ignorant and uninformed that we will believe them. O: Are your concerns similar to those of EPICC as you understand the concerns of the officers and members of the organization?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

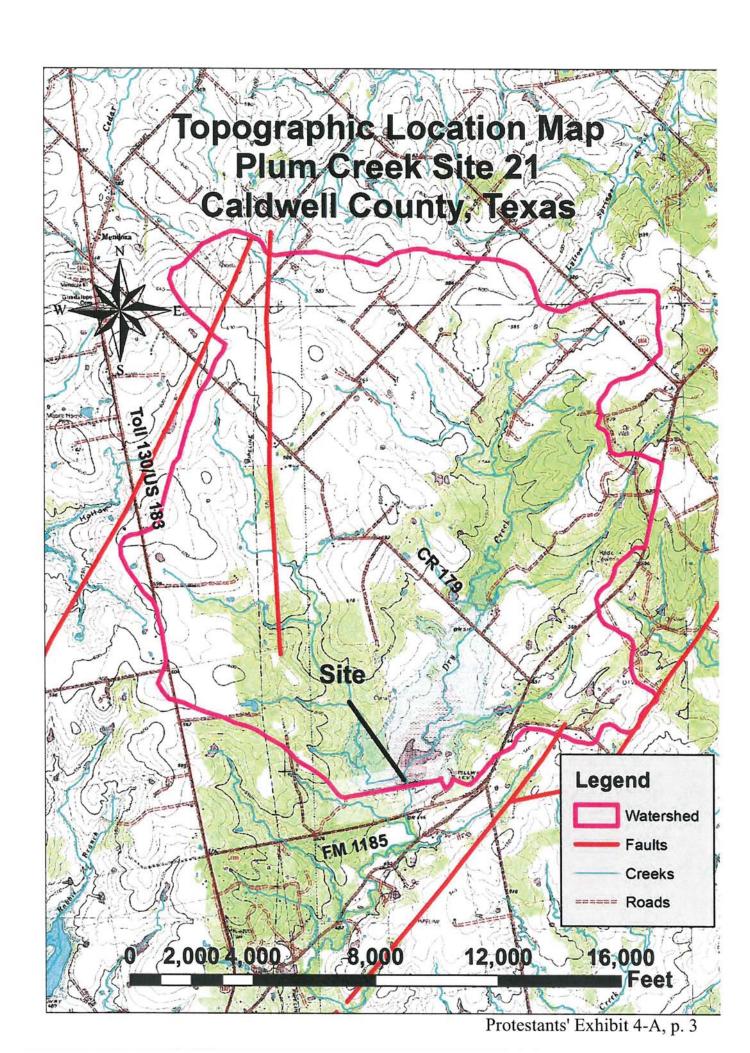
20

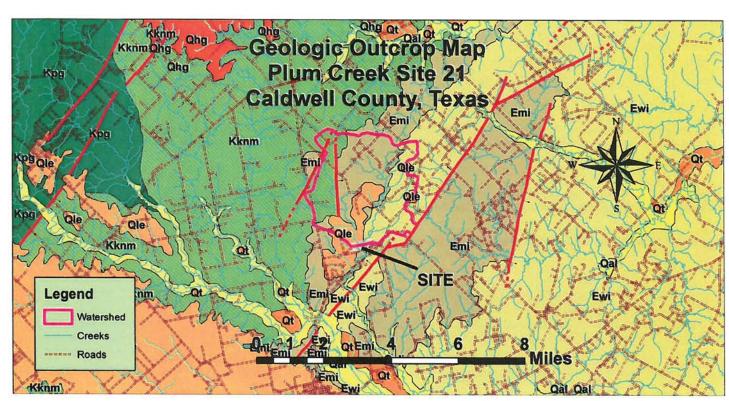
21

22

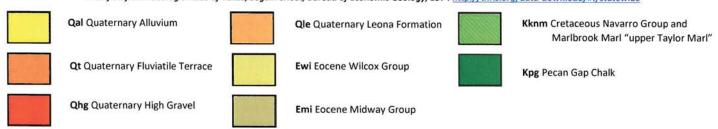
- 1 A: Yes.
- 2 Q: What is the basis for your and EPICC's concerns?
- 3 A:
- For one, Feather Wilson, a geologist with the Plum Creek Conservation District,
- 5 has publicly stated that this is not a good place for a landfill, and the existence of
- so much water at this site, such as floodplain, aquifers, and creeks, confirms this is
- 7 true. Also, our concern about the suitability of the subsurface soils at the proposed
- landfill site, and their potential to transmit contaminants, has been verified by a
- gentleman who is a senior geologist with NRCS. He became aware of EPICC's
- fight against this landfill through information posted on our website. Thereafter
- he reached out to us by email and sent us photos, maps, and other data, along with
- his impressions about the site. He acknowledged that the site includes permeable
- soils and even the existence of a fault line that runs directly through the area.
- 14 Q: Can you please identify what is marked as Exhibit 4-A?
- 15 A: Yes, this is an e-mail from early April 2016 that was received through EPICC's
- 16 email.
- 17 Q: Can you briefly describe the content of the letter and how it relates to the concerns
- 18 of EPICC?
- 19 A: First let me say that I am not a geologist or an expert on topics related to the
- subsurface; however, this letter states that the subsurface of the proposed landfill
- site is not conducive for a municipal solid waste landfill. The individual writes,
- and I quote: "There are lenses of sand within this unit that have permeability. This

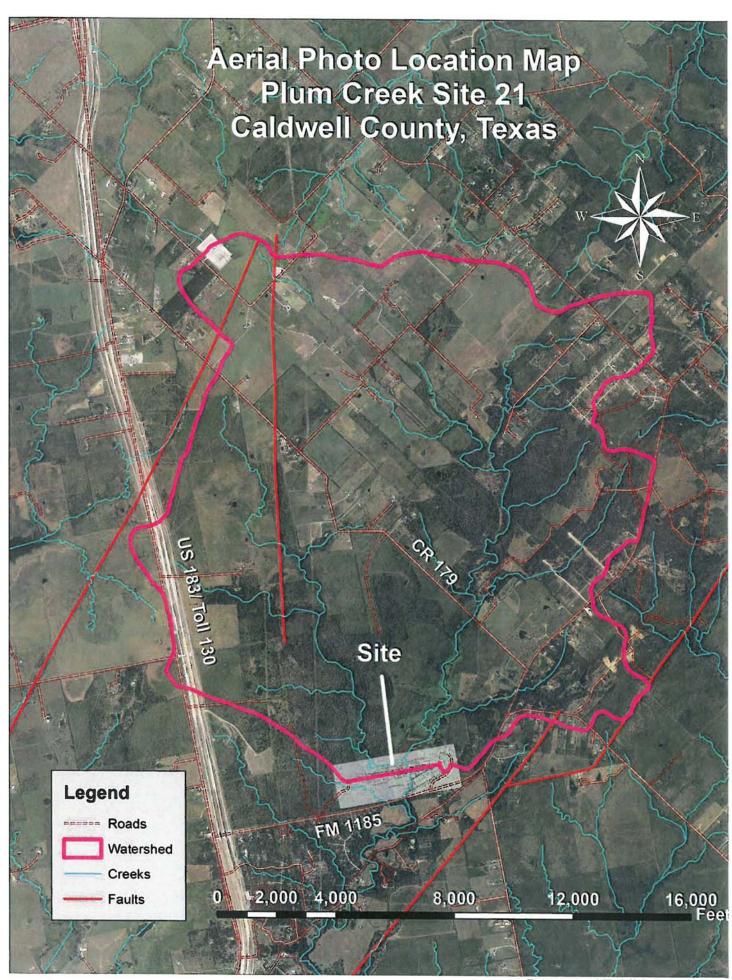
1		means leachate has pathways to enter the subsurface. Further, there is faulting in
2		the area. This means there is high angle to vertical fracturing that further increases
3		permeability." This statement reinforces what other EPICC members and local
4		landowners have been saying throughout this landfill permitting process. He also
5		included photos of soil samples from holes he drilled in the spillway for the dam.
6		He noted that the soils in the photographs indicate permeable zones.
7		PROTESTANTS OFFER EXHIBIT 4-A
8		
9		III. CONCLUSION
10	Q:	What are you asking the Commission to do with this application?
11	A:	Deny it.
12	Q:	Does this conclude your testimony?
13	A:	Yes, although I reserve the right to supplement this testimony.

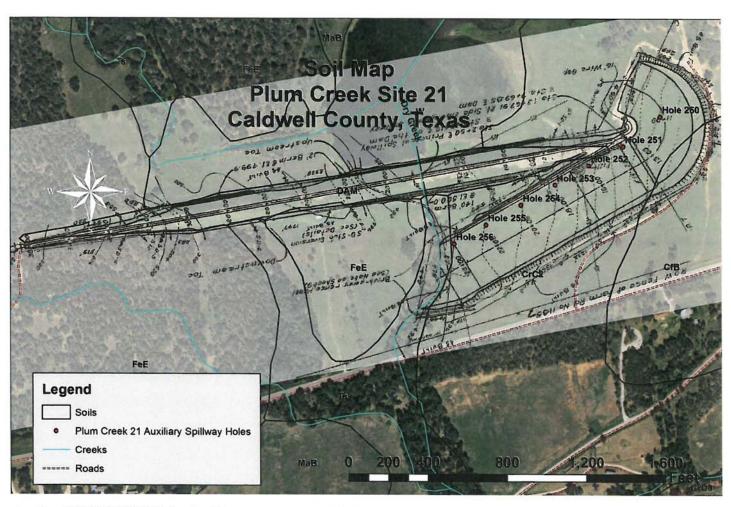



Email from NRCS geologist

1 message


```
- On Thu, 4/7/16, Moffatt, Bryan - NRCS, Fort Worth, TX < Bryan. Moffatt@ftw.usda.gov> wrote:
> From: Moffatt, Bryan - NRCS, Fort Worth, TX < Bryan.Moffatt@ftw.usda.gov>
> Subject: RE: Some Maps to Look At
> To: "EPICC TX" <epicc183@yahoo.com>
> Date: Thursday, April 7, 2016, 10:55 AM
> Leslie.
> I did not attach the maps on
> purpose. I wanted a response to verify the e-mail address
> was legitimate.
> Attached
> are the maps. Take a close look at the geologic outcrop map.
> Besides the Leona outcropping on the site so does the Midway
> Group The Midway is described as: (see: http://mrdata.usgs.gov/geology/state/sgmc-unit.php?unit=TXPNmi%3B0
> There are lenses of
> sand within this unit that have permeability. This means
> leachate has pathways to enter the subsurface. Further,
> there is faulting in the area. This means there is high
> angle to vertical fracturing that further increases
> permeability.
> Look at
> photos P1192, P1197 and P1201. Note the orange color. This
> is iron staining. It is deposited in permeable zones that
> has intermittent water passing thru depositing iron that is > in solution. The deposited iron from the water passing thru
> oxidizes i.e. the orange color. In 2014 I drilled 7 holes in
> the Auxiliary Spillway to obtain samples for engineering
> design work. This is where the photos can from. Additional
> work is planned for this site. No date has been set as of
> now.
> Please keep the
> attached private. Do not post it. Thanks!
> Bryan
> ——Original Message——
> From: EPICC TX [mailto:epicc183@yahoo.com]
> Sent: Thursday, April 07, 2016 10:02 AM
> To: Moffatt, Bryan - NRCS, Fort Worth, TX
> <Bryan.Moffatt@ftw.usda.gov>
> Subject: Re: Some Maps to Look At
> Understood. Thank you for
> this information, Mr. Moffatt,
> You reference maps in the subject line... did
> you intend to attach them?
> Thank you.
> Leslie
> On Wed, 4/6/16, Moffatt, Bryan - NRCS, Fort
> Worth, TX <Bryan.Moffatt@ftw.usda.gov>
> wrote:
> Subject: Some Maps
> to Look At
> To: "epicc183@yahoo.com"
> <epicc183@yahoo.com>
> Date: Wednesday, April 6, 2016, 4:27 PM
```


```
> You can tell
> from my
> e-mail address and salutation below
> why I don't want publicity. What I say is personal and
> in no way represents the NRCS.
> The Plum Creek 21 FCS is
> slated for upgrade because of hazard classification. The > planned upgrade of the flood control structure (dam) has
> nothing to, do with the proposed dump site
> Bryan S.
> Moffatt PG
> 2887 Geological Services Unit
> Senior State Geologist
> USDA - NRCS
> Fort Worth,
> Texas
> 817.233.6268
> This electronic message
> contains information generated by
> the USDA
> solely for the intended recipients. Any
> unauthorized interception of this message or the use or 
> disclosure of the information it contains may
> violate the
> law and subject the violator to
> civil
> or criminal penalties. If you
> believe you have received
> this message in
> error, please notify the sender and delete
> the email immediately.
> This
> electronic message contains information generated by the
> USDA solely for the intended recipients. Any unauthorized
> interception of this message or the use or disclosure of the
> information it contains may violate the law and subject the
> violator to civil or criminal penalties. If you believe you
> have received this message in error, please notify the
> sender and delete the email immediately.
 9 attachments
 Plum_Creek_21_Topographic_Location_Map sm.pdf 350K
 Geologic Outcrop Map.pdf
1488K
 Plum_Creek_21_Aerial_Photo_Location_Map sm.pdf
 Plum Creek 21 Soils Map and Properties.pdf
 Plum_Creek_21_Georeferenced_As-Built_sm.pdf
 P1192 Plum Creek 21, Sample 251.5, 10' - 12.5' sm.pdf 757K
 P1197 Plum Creek 21, Sample 251.7, 15' - 17.5' sm.pdf 779K
 P1201 Plum Creek 21, Sample 251.9, 25' - 26.5' sm.pdf
738K
 Plum Creek 21, Combined Seismic Data.pdf
1760K
```



Modified from: Geologic Atlas of Texas, Seguin Sheet, Bureau of Economic Geology, 1974 http://tnris.org/data-download/#!/statewide

Base Map: USDA/NRCS 2014 NAIP from http://datagateway.nrcs.usda.gov/, Soils from USDA/NRCS SOIL Survey Geographic (SSURGO), Caldwell County, Texas, 2001, As-built from NRCS Texas State Office Files, 07/13/1962, Georeferenced with ArcGIS 10.2 09/03/2014, Creeks from National Hydrology Database, Roads from TNRIS http://tnris.org/data-download/#/statewide, Texas Strategic Mapping Program (StratMap) 2006, Hole Location from field survey 09/11/2014

Engineering Properties

Caldwell County, Texas

[Absence of an entry indicates that the data were not estimated. This report shows only the major soils in each map unit]

Map symbol			Classification		Fragments		Percent passing sieve number				Linuid	
and soil name	Depth	USDA texture	Unified	AASHTO	>10 Inches	3-10 Inches	4	10	40	200	Liquid limit	Plasticity
	In			77.07.70	Pct	Pct		10	.40	200	Pct	index
CcD3:												
Chaney, severely eroded	0-14	Fine sandy loam	CL-ML, ML, SM	A-4	0	0	95-100	90-100	80-95	45-65	16-30	NP-7
	14-31	Clay, sandy clay	CH, CL, SC	A-6, A-7-6	0	0	90-100	90-100	90-100	43-85	39-60	24-42
	31-52	Clay, sandy clay, sandy clay l	oam CL, SC	CH, A-7-6	A-6,	0	0	90-100	90-100	80-100	45-85	25-5511-40
	52-62	Channery clay, sandy clay, sandy clay loam	CH, CL, SC, SC-SM	A-2, A-4, A-6, A-7-6	0	0	90-100	90-100	80-100	25-85	25-60	6-40
CfB:												
Crockett	0-12	Fine sandy loam	CL, ML, SC, SM	A-4, A-6	0	0-2	98-100	94-100	89-100	40-96	15-35	3-15
	12-18	Clay, clay loam, sandy clay	CH, CL	A-6, A-7-6	0	0	89-100	75-100	75-100	60-98	35-59	23-42
	18-38	Clay, clay loam, sandy clay	CH, CL	A-6, A-7-6	0	0	89-100	75-100	75-100	65-98	35-59	23-42
	38-54	Clay, clay loam, sandy clay lo	am CL	CH, A-7-6	A-6,	0	0-5	90-100	85-100	75-100	50-90	30-6015-40
	54-62	Clay loam	CH, CL	A-7-6	0	0-5	90-100	90-100	90-100	70-99	45-71	27-52

Survey Area Version: 8 Survey Area Version Date: 12/12/2013

Page 1

Protestants' Exhibit 4-A, p. 7

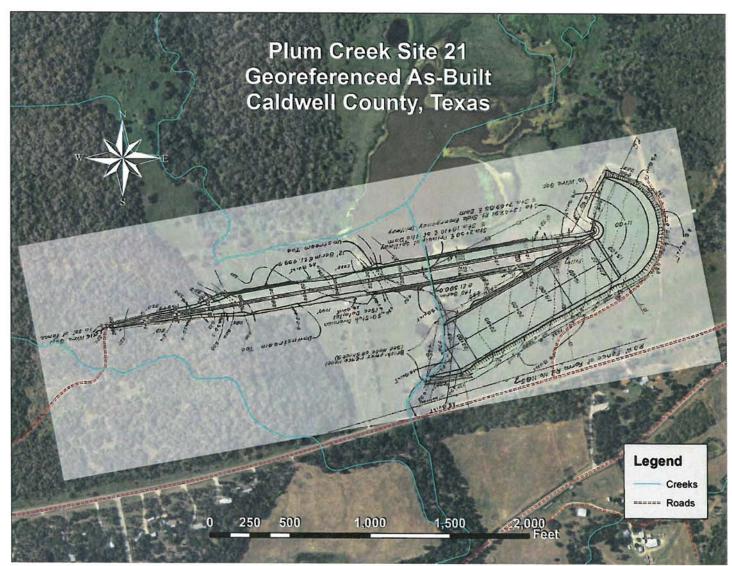
Engineering Properties

Caldwell County, Texas

			Classi	fication	Fragi	ments	Per	cent passing	sieve numl	oer		2001 0000
Map symbol and soil name	Depth	USDA texture	Unified	AASHTO	>10 Inches	3-10 Inches	4	10	40	200	Liquid limit	Plasticity
	In				Pct	Pct				W-5223	Pct	
CrC2:												
Crockett, eroded	0-7	Loam	CL, ML, SC, SM	A-4, A-6	0	0-2	98-100	94-100	89-100	40-96	15-35	3-15
	7-12	Clay, clay loam, sandy clay	CH, CL	A-6, A-7-6	0	0	89-100	75-100	75-100	60-98	35-59	23-42
	12-30	Clay, clay loam, sandy clay	CH, CL	A-6, A-7-6	0	0	89-100	75-100	75-100	65-98	35-59	23-42
	30-48	Clay, clay loam, sandy clay loa	m CL	CH, A-7-6	A-6,	0	0-5	90-100	85-100	75-100	50-90	30-6015-40
	48-62	Clay loam	CH, CL	A-7-6	0	0-5	90-100	90-100	90-100	70-99	45-71	27-52
FeE: Fett	0-14	Gravelly sandy loam	GM, GP, GP-GM,	A-1-a, A-2-4	0-2	0-10	12-65	5-60	5-50	2-25	16-25	NP-7
			SP-SM									
	14-30	Gravelly clay, gravelly sandy clay, very gravelly clay	GC, SC	A-2-7	0-2	0-10	30-65	15-50	15-40	15-28	51-75	30-49
	30-80	Clay, gravelly clay, sandy clay	CH	A-7-6	0	0-5	80-100	70-100	70-100	70-99	51-84	35-61
MaB:												
Mabank	0-7	Loam	CL, CL-ML,	A-4, A-6	0	0	95-100	95-100	80-98	40-70	19-32	4-15
			SC,									
	7-39	Clay, clay loam	CH, CL	A-6, A-7-6	0	0	95-100	95-100	95-100	60-85	38-55	22-37
	39-76	Clay, clay loam, sandy clay	CH, CL	A-6, A-7-6	0	0	95-100	95-100	95-100	60-85	38-55	22-37

Survey Area Version: 8 Survey Area Version Date: 12/12/2013

Page 2

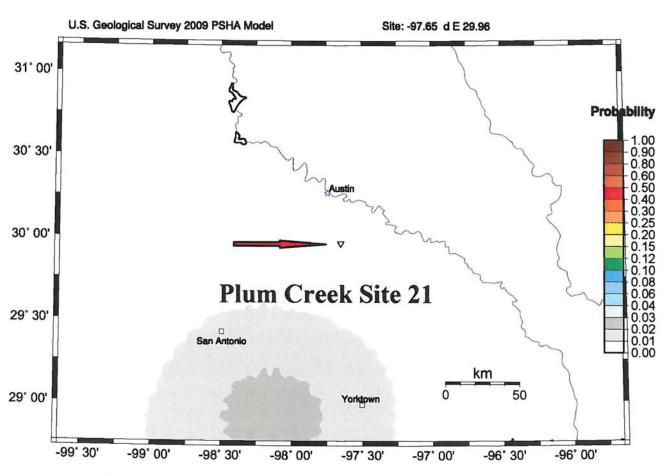

Protestants' Exhibit 4-A, p. 8

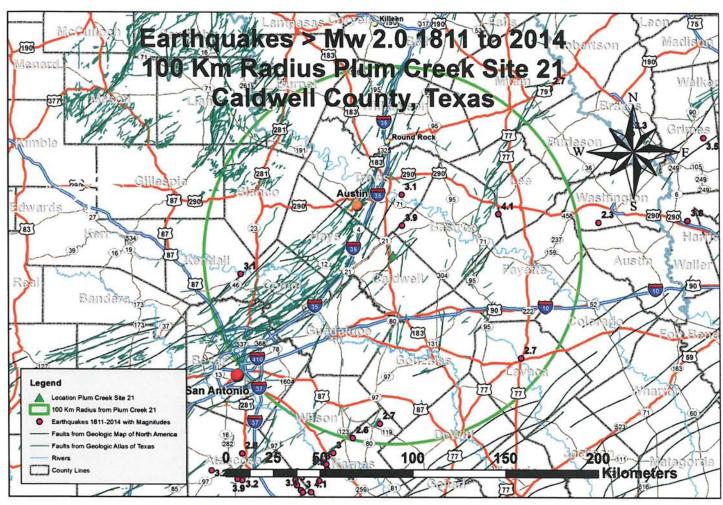
Engineering Properties

Caldwell County, Texas

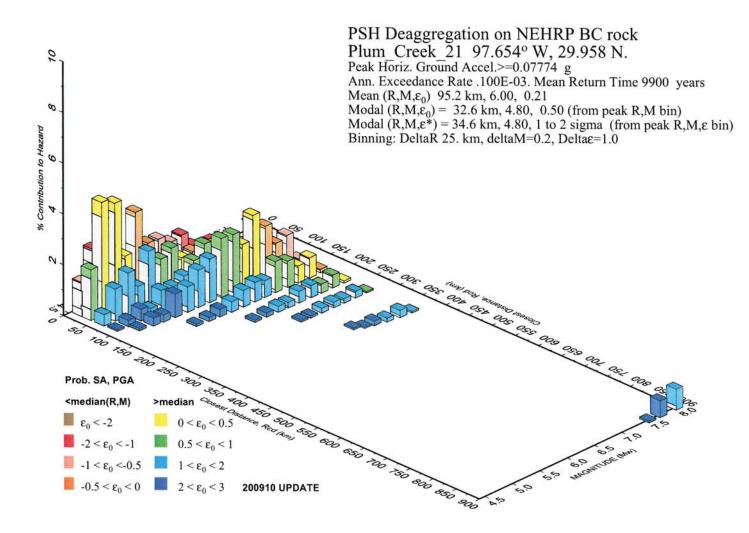
	Map symbol			Classification		Fragments		Per	cent passino	11-14	DI		
	and soil name	Depth	USDA texture	Unified	AASHTO	>10 Inches	3-10 Inches	4	10	40	200	Liquid limit	Plasticity
Ts:		In				Pct	Pct					Pct	
Tinn		0-4	Clay	CH, CL	A-7-6	0	0	95-100	95-100	85-100	80-100	45-75	25-54
		4-62 62-80	Clay, silty clay Clay, silty clay	CH	A-7-6 A-7-6	0	0	95-100 95-100	90-100 90-100	80-100 80-100	80-100 80-100	55-75 55-75	35-54 35-54

Survey Area Version: 8 Survey Area Version Date: 12/12/2013 Page

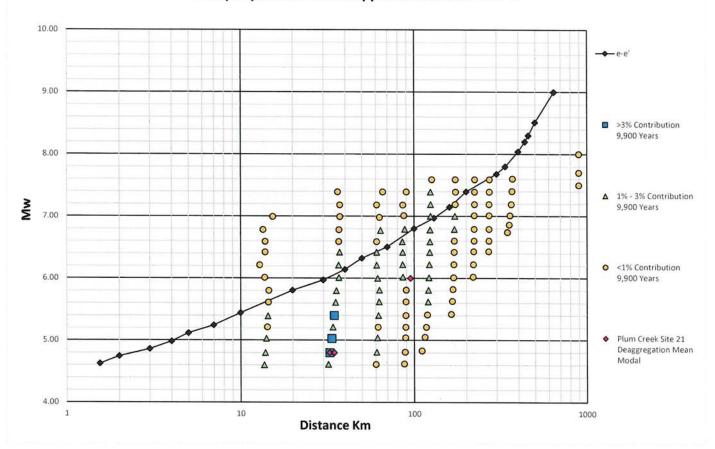

Protestants' Exhibit 4-A, p. 10



Probability of earthquake with M > 5.0 within 100 years & 50 km


GMT 2015 Mar 24 20:55:59 Earthquake probabilities from USGS OFR 08-1128 PSHA. 50 km maximum horizontal distance. Site of interest: triangle. Epicenters mb>5 black circles; rivers blue

Protestants' Exhibit 4-A, p. 14


Data from: Faults, Geologic Atlas Texas http://www.tnris.org/get-data?quicktabs maps data=1 Bureau of Economic Geology, University of Texas Austin and USGS, 2007.

Additional Fault data from Geologic Map of North America, USGS, 2005, http://ngmdb.usgs.gov/gmna/, Earthquake and Magnitude from 2002 Deaggregations txt data https://geohazards.usgs.gov/deaggint/2002, USGS, and https://geohazards.usgs.gov/deaggint/2002, USGS, and https://www.ngdc.noaa.gov/hazard/int_srch.shtml, NOAA, Data plotted in ArcMap 10.2.

GMT 2015 Mar 24 20:58:14 Distance (R), magnitude (M), epsilon (E0,E) deaggregation for a site on rock with average vs= 760. m/s top 30 m. USGS CGHT PSHA2008 UPDATE Bins with it 0.05% contrib. omitted

Mw vs Distance for Liquefaction on Plum Creek Site 21 vs Papdopoulos and Lefkoppoulos 1993 Curve e-e'

Data from: http://earthquake.usgs.gov/hozards/apps, e-e' curve plotted from Magnitude-Distance Relations for Liquefaction in Soil from Earthquakes, Bulletin of the Seismological Society of America, Vol. 83, June 1993. % contribution data from txt PSHA Deaggregation parameters - 1% in 200 years, Return Period 9,900 years, Exceedance PGA >/= 0.07774, Annual Exceedance Rate 1.0 x 10-4

1	tance Mag 32.6	4.8	4.454	1.55										Contribution Me		
2				1.55	4.6233	32.6	4.8	4.454	123.3	6.78	2.67	89.9	5.81	0.995	95.2	
3	33.5	5.03	4.199	2	4.7445	33.5	5.03	4.199	13.9	4.8	2.456	87.2	7.01	0.989	32.6	
4	34.6	5.4	3.482	3	4.8605	34.6	5.4	3.482	122.1	6.22	2.315	61.9	5.21	0.972	34.6	
5	123.3	6.78	2.67	4	4.9839				122.7	6.42	2.272	36.9	6.78	0.972		
	13.9	4.8	2.456	5	5.1168				62.3	5.4	2.158	118.8	5.41	0.93		
6 7	122.1	6.22	2.315	7	5.2427				35.2	5.61	2.052	89.5	5.4	0.842		
8	122.7	6.42	2.272	10	5.4423				124.1	7	2.032	897.6	8	0.822		
	62.3	5.4	2.158	20	5.806				35.6	5.8	2.015	173.4	7.39	0.801		
9	35.2	5.61	2.052	30	5.9708				32	4.61	1.991	89.7	5.62	0.77		
10	124.1	7	2.032	40	6.1416				34	5.21	1.942	170	6.42	0.766		
11	35.6	5.8	2.015	50	6.3238				63.1	5.81	1.885	36.8	6.59	0.726		
12	32	4.61	1.991	70	6.5045				85.8	6.22	1.813	14.3	5.21	0.683		
13	34	5.21	1.942	100	6.8024				14.1	5.03	1.779	60.8	6.59	0.677		
14	63.1	5.81	1.885	130	6.9704				36.7	6.21	1.771	172.7	7.19	0.668		
15	85.8	6.22	1.813	160	7.1472				121.3	6.01	1.713	170.1	6.6	0.664		
16	14.1	5.03	1.779	200	7.3954				123	6.59	1.711	897.6	7.7	0.659		
17	36.7	6.21	1.771	300	7.6796				36.8	6.01	1.697	169.2	6.22	0.653		
18	121.3	6.01	1.713	337.5	7.8				61.4	5.04	1.672	63.2	6.98	0.627		
19	123	6.59	1.711	400	8.041				62.8	5.62	1.641	86.2	7.18	0.603		
20	36.8	6.01	1.697	437.1	8.2				85.9	6.42	1.583	37.4	6.99	0.535		
21	61.4	5.04	1.672	458	8.3				120.6	5.81	1.47	14.5	5.61	0.514		
22	62.8	5.62	1.641	500	8.5134				88.3	6.79	1.383	223.1	7.39	0.503		
23	85.9	6.42	1.583	642.5	9				86.1	6.02	1.363	222.1	7.01	0.482		
24	120.6	5.81	1.47						13.7	4.6	1.343	90.4	7.39	0.47		
25	88.3	6.79	1.383						60.8	6.21	1.319	221.8	6.79	0.464		
26	86.1	6.02	1.363		P	oints above a	nd left of e-e	curve	61.6	6	1.302	89.1	5.04	0.458		
27	13.7	4.6	1.343						124.1	7.39	1.275	66	7.39	0.457		
28	60.8	6.21	1.319						60.7	4.81	1.269	14.6	5.8	0.455		
29	61.6	6	1.302						64.1	6.77	1.25	60.2	4.61	0.449		
30	124.1	7.39	1.275						170.5	6.79	1.222	168.5	6.01	0.408		
31	60.7	4.81	1.269						124.3	7.19	1.17	222.8	7.19	0.353		
32	64.1	6.77	1.25						37.2	6.42	1.167	13.8	6.01	0.35		
33	170.5	6.79	1.222						85.5	6.59	1.109	12.9	6.21	0.332		
34	124.3	7.19	1.17						60.8	6.42	1.061	89.3	5.21	0.321		
35	37.2	6.42	1.167						14.4	5.39	1.041	115	5.05	0.316		
36	85.5	6.59	1.109						171.6	7	1.03	167	5.82	0.295		
37	60.8	6.42	1.061						119.9	5.62	1.005	369	7.4	0.29		
38	14.4	5.39	1.041									117.1	5.21	0.288		
39	171.6	7	1.03									37.3	7.18	0.272		
40	119.9	5.62	1.005									272.1	7.39	0.265		
41	89.9	5.81	0.995									60.9	7.18	0.264		
42	87.2	7.01	0.989									36.3	7.39	0.255		
43	61.9	5.21	0.972									13.9	5.42	0.254		
44	36.9	6.78	0.972									88.5	4.81	0.248		
45	118.8	5.41	0.93									220.3	6.43	0.233		
46	89.5	5.4	0.842									221.4	6.6	0.223		
47	897.6	8	0.822									271.3	7.01	0.22		
48	173.4	7.39	0.801									270.9	6.79	0.196		
49	89.7	5.62	0.77									13.5		0.196		
50	170	6.42	0.766									359	6.78 7.01	0.189		
51	36.8	6.59	0.726													
52	14.3	5.21	0.683									271.6	7.19	0.174		
53	60.8	6.59	0.677									365	7.19	0.164		

Protestants' Exhibit 4-A, p. 18

54	172.7	7.19	0.668				126.4	7.59	0.16	
55	170.1	6.6	0.664				165.7	5.63	0.159	
56	897.6	7.7	0.659				13.9	6.59	0.153	
57	169.2	6.22	0.653				172.9	7.59	0.131	
58	63.2	6.98	0.627				15.4	6.99	0.103	
59	86.2	7.18	0.603				110.5	4.83	0.092	
60	37.4	6.99	0.535				163.4	5.42	0.091	
61	14.5	5.61	0.514				223,7	7.59	0.085	
62	223.1	7.39	0.503				270.6	6.6	0.082	
63	222.1	7.01	0.482				218.5	6.02	0.078	
64	90.4	7.39	0.47				269.7	6.43	0.073	
65	221.8	6.79	0.464				346.4	6.74	0.067	
66	89.1	5.04	0.458				371.5	7.6	0.066	
67	66	7.39	0.457				897.5	7.5	0.064	
68	14.6	5.8	0.455				87.6	4.62	0.064	
69	60.2	4.61	0.449				355.4	6.86	0.058	
70	168.5	6.01	0.408				272.6	7.59		
71	222.8	7.19	0.353				272.6	7.59	0.055	
72	13.8	6.01	0.35							
73	12.9	6.21	0.332							
74	89.3	5.21	0.321							
75	115	5.05	0.316							
76	167	5.82	0.295							
77	369	7.4	0.29							
78	117.1	5.21	0.29							
79	37.3	7.18								
80	272.1		0.272							
81	60.9	7.39	0.265							
		7.18	0.264							
82	36.3	7.39	0.255							
83	13.9	6.42	0.254							
84	88.5	4.81	0.248							
85	220.3	6.43	0.233							
86	221.4	6.6	0.223							
87	271.3	7.01	0.22							
88	270.9	6.79	0.196							
89	13.5	6.78	0.189							
90	359	7.01	0.177							
91	271.6	7.19	0.174							
92	365	7.19	0.164							
93	219.3	6.22	0.161							
94	126.4	7.59	0.16							
95	165.7	5.63	0.159							
96	13.9	6.59	0.153							
97	172.9	7.59	0.131							
98	15.4	6.99	0.103							
99	110.5	4.83	0.092							
100	163.4	5.42	0.091							
101	223.7	7.59	0.085							
102	270.6	6.6	0.082							
103	218.5	6.02	0.078							
104	269.7	6.43	0.073							
105	346.4	6.74	0.067							
106	371.5	7.6	0.066							
	897.5									
107 108 109 110		7.5 4.62 6.86 7.59	0.064 0.06 0.058 0.055							