UNITED STATES DEPARTMENT OF THE INTERIOR

BUREAU OF RECLAMATION

DESIGN OF SMALL DAMS

A Water Resources Technical Publication

Second Edition 1973 Revised Reprint 1977

> TJFA 412 PAGE 001

Contents

Page

v

Preface to the second edition . ٠. . Preface to the first edition. vii

Chapter I-Project Planning

A. PURPOSE OF THE DEVELOPMENT

Section	L								
1.	General	•			•	•			1
2.	Irrigation				•		•		1
3.	Domestic and n	nuni	cip	al j	our	pos	ses		-2
4.	Industrial use .		•	•		•	•	•	2
5.	Stock water .	•		• .			•	•	2
6.	Power developm	nent		·.	•	•	•	•	2
7.	Flood control.	•		•	•		•		2
8.	Recreation			•		•	•	•	2
9.	Wildlife	•				•	•	•	3
10.	Water storage	for	str	ean	ıflo	w	reg	-	
	ulation	•	•	•			•	•	3
11.	Miscellaneous	wate	er	cor	isei	rva	tioı	n	
	projects	•	•	•	•	•	•	•	3
	B. PRC	DIFC	5	IUD	IE2				
12.	Tests of feasibility	ility	•		•	•	•	•	4
13.	Esthetic values		•	•		•	•	•	4
14.	Extent of studie	es.				•	•	•	4
15.	Stages of invest	igat	ion	•	•	•	•	•	4
16.	Related projects	s and	l st	udi	es (of 1	ieed	f	5
17.	Development of	f the	e go	ene	ral	\mathbf{pl}	an		5
18.	Outline of inve	stiga	atic	ns	•	•	•	•	8
19.	Planning progra	ams	for	· su	rve	\mathbf{ys}	and	f	
	investigation	s.	•	•	•	•	•	•	10
2 0.	Mapping	•	•	•	•	•	•	•	11
21.	Hydrologic inve	estig	atio	ons	•	•	•		12
22,	Investigations	of f	our	ıda	tio	ns	and	f	
	materials .	•		•		•	•		14
23.	Sanitary studie	s.	•			•	•	•	15
24.	Recreation and	fish	and	l w	ildl	ife		•	15
25.	Design of struc	ctur	es	•	•	• •	•		15
26.	Preparation of	cost	; es	tim	ate	es	•		15
27.	Quantity estimation	ates	•	•	•	•	•	•	15

Chapter I—Project Planning—Con.

B. PROJECT STUDIES—Continued

Section				Page
28. Unit costs			•	16
29. Finalizing the project plans		•	•	16
30. Planning reports	•	•	•	17
31. Report on design of dam .	•			17

C. BIBLIOGRAPHY

32.	Bibliography	•	•	•	•	•		•	•	19
-----	--------------	---	---	---	---	---	--	---	---	----

Chapter II—Ecological and **Environmental Considerations**

A. INTRODUCTION

33. The basis for environmental and	
ecological considerations	21
(a) General considerations .	21
(b) Planning operations	22
B. FISH AND WILDLIFE CONSIDERATIONS	
34. Fish and wildlife considerations .	22
(a) General	22
(b) Ecological and environ-	
mental considerations	
for fish	22
(c) Environmental considera-	
tions for wildlife	26
tions for whatte	20
C. RECREATIONAL CONSIDERATIONS	
35. Recreational considerations	29
(a) General.	29
(b) Recreational development	29
(1)	
D. DESIGN CONSIDERATIONS	
36. Environmental design considera-	
$tions \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	31
(a) General	31
IX	

Chapter II—Ecological and Environmental Considerations-Con. DESIGN CONSIDERATIONS Const

.

X

n

υ.	DESIGN	CONSIDER	AIIONS	Con	tinued	1
Section				•	,	Page
	(b) S	structural	consid	eratio	\mathbf{ns}	31
	(c) I	andscape	consid	eratio	ns	32
	(d) F	rotective	consid	eratio	\mathbf{ns}	33
	(e) (onstruct	ion cor	sider	a-	
		tions .	• • •	• •	•	33
	E	BIBLIOG	RAPHY			
37. B	ibliograp	hy				35

Chapter III—Flood Studies

A. GENERAL

38. Scope	37
39. Streamflow data	37
40. Precipitation data	39
41. Use of streamflow and precipita-	
tion records	39
42. Watershed data	40
43. Factors to be considered in estimat-	
ing flood flows	40
(a) General	40
(b) Geographical location .	41
(c) Storm potential	41
(d) Drainage area	42
(e) Soil and cover	42
(f) Runoff distribution	42
44. A method of computing maximum	
probable flood discharge	42
45. Inflow design flood	43
46. Envelope curves	44
47. Estimates of frequency of occur-	
rence of floods	44
48. Special cases	45
B. PROCEDURES	
49. Introduction	46
50. Estimating storm potential	46
(a) General	46
(b) Definitions	46
(c) Probable maximum storm	20
considerations	47
(d) Generalized precipitation	
charts	17

Chapter III—Flood Studies—Continued

B. PROCEDURES—Continued

Section	Page
(e) Design storms for low	
hazard areas	52
51. Estimating runoff from rainfall .	54
(a) General	54
(b) Analysis of observed rain-	•
fall data	57
(c) Estimating direct runoff	
from soil and cover data	61
52. Unitgraph principles	64
53. Hydrograph analysis	64
54. Unitgraph derivation for ungaged	
areas	65
55. Triangular hydrograph analysis	67
56. Estimating time of concentration.	67
57. Application of triangular hydro-	
graphs	67
58. A method of computing an inflow	
design flood	73
(a) Watershed data	73
(b) Magnitude criteria	73
(c) Computation of inflow de-	
sign floods—east of	
105° meridian	76
(d) Computation of inflow de-	
sign floods — west of	
105° meridian	84
59. Frequency curve computations	92
C. BIBLIOGRAPHY	

60.	Bibliography						1	93
		-	-	•	•	•		

Chapter IV—Selection of Type of Dam

A. CLASSIFICATION OF TYPES

61.	General				97
62.	Classification according to us	se.	•	•	97
63.	Classification by hydraulic d	egi	• on	•	07
64.	Classification by materials	0.51	gn	•	00
65.	Earthfill	•	•	•	00
66.	Rockfill	•	•	•	100
67.	Concrete gravity	•	•	•	100
68.	Concrete arch	•	•	•	100
69	Concrete buttmong	•	•	•	101
70	Other types	•	•	•	101
10.	other types	• .	•	•	102

CONTENTS

Chapter IV—Selection of Type of Dam—Continued

B. PHYSICAL FACTORS GOVERNING SELECTION OF TYPE

Section	ı	Page
71.	General	102
72.	Topography	102
73.	Geology and foundation conditions.	102
74.	Materials available	103
75.	Spillway size and location	103
76.	Earthquake	104
	C. LEGAL, ECONOMIC, AND ESTHETIC CONSIDERATIONS	
77.	Statutory restrictions	104
78	Purpose and benefit-cost relation	104

78.	Purpose and	ben	efit	t-co	ost	\mathbf{rel}	ati	on		104
79.	Appearance	•	•	•	•	•	•	•	•	105

Chapter V—Foundations and **Construction Materials**

A. SCOPE OF INVESTIGATIONS

80.	General	•		•	•		107
81.	Foundations	•				•	107
82.	Embankment soils				•		110
83.	Riprap and rockfill						112
84.	Concrete aggregate				•	•	113

SOURCES OF INFORMATION B

85.	Topographic maps .	•			114
86.	Geologic maps		•		115
87.	Agricultural soil maps		•	•	118
88.	Airphotos				124

C. SOIL CLASSIFICATION

89 Gene	eral		•		•						•	127
90. Soil	com	por	ient	s	•						•	128
	(a)	Si	ze		•			•	•		•	128
	(b)	Gı	ada	ati	\mathbf{on}				•	•	•	128
	(c)	\mathbf{Sh}	ape	9	•		•	•	•	•	•	130
91. Soil	moi	stu	re .		•	•	•	•	•		•	131
92. Pro	perti	es (of s	oil	co	mĮ	oon	ent	\mathbf{s}	•	•	132
	(a)	Gı	rave	el e	ind	l sa	nd	•	•	•	•	132
	(b)	Si	lt a	nd	cl	ay	•	•	•	•	•	132
	(c)	Or	gar	nic	m	att	\mathbf{er}	•	•	•	•	135

Chapter V—Foundations and **Construction Materials**—Continued

C. SOIL CLASSIFICATION—Continued Section Page 93. Unified Soil Classification System . 135 (a) General 135 (b) Field classification . . . 135 (c) Laboratory classification. 136 94. Engineering characteristics of soil groups 136 (a) General 136 (b) Permeability 137(c) Compressibility . . . 138(d) Shear strength . . . 139 D. ROCK CLASSIFICATION 95. Rocks and minerals 139 (a) Definition and types . . 139 (b) Mineral identification . . 139 (c) Common rock-forming minerals 140 96. Igneous rocks 141 (a) General 141 (b) Classification of igneous rocks 142(c) Primary structural features of igneous rocks . 144 97. Sedimentary rocks 144 (a) General 144 (b) Classification of sedimentary rocks 146 (c) Primary structural features of sedimentary rocks 14798. Metamorphic rocks 148 (a) General 148 (b) Classification of common metamorphic rocks . . 148 99. Engineering properties of rocks . 149 E. SURFACE EXPLORATIONS 100. General 150 101. Fluvial soils 150(a) Definition 150

(b) Torrential outwash.

(c) Valley fill

(d) Lake beds

TJFA 412 PAGE 004

151

151

156

.

TJFA 412 PAGE 005

Chapter V—Foundations and Construction Materials—Continued

E. SURFACE EXPLORATIONS—Continued

Dection	2									Page
102.	Glacial d	leposits	•						•	156
	(a)	Definiti	on	•					•	156
	(b)	Moraina	al d	lep	osi	its		•	•	156
	(c)	Glacial	out	wa	sh		•	•		156
103.	Aeolian	deposits	•	•						157
104.	Residual	soils .	•	•	•		•	•	•	158
F	SUBSU	DEACE EV								
105	Test nits	troncho		ика nd	10	KY mn	Mi	:110	ODS	150
105.	Test pits	, trenche	s, a	nd	tu	RY Inn	mi	: H		158
105.	Test pits (a)	, trenche General	s, a	nd	tu	nn •	mi iels	: H		158 158
. 105.	Test pits (a) (b)	, trenche General Test pit	s, a	nd	10 . tu	nn	Mi els	: H		158 158 158
105.	Test pits (a) (b) (c)	, trenche General Test pit Trenche	s, a	nd	tu	кт inn	Mi els	: H(158 158 158 159
105.	Test pits (a) (b) (c) (d)	, trenche General Test pit Trenche Tunnels	s, a	nd	tu	кт inn	Mi els	- 1 H0 		158 158 158 159 160
105. 106.	Test pits (a) (b) (c) (d) Auger be	, trenche General Test pit Trenche Tunnels orings	s, a	nd	10 tu	кт inn	Mi els	- 1 H (158 158 158 159 160 160
105. 106. 107.	Test pits (a) (b) (c) (d) Auger be Rotary d	, trenche General Test pit Trenche Tunnels orings rilling	s, a	nd	tu	кт inn	Mi els	- 1 H (158 158 159 160 160 163

G. SAMPLING

168

193

100

109. Geophysical methods .

110.	General	• •								169
111.	Disturbe	d sai	nples	•						171
	(a)	San	pling	g o	pei	1 6	exc	eav	a-	
		tic	ons.		•				•	171
	(b)	Sam	pling	au	ger	h	ole	з.		172
	(c)	Sam	pling	sto	ckr	oile	s	•		172
	(d)	Ripı	ap sa	mp	les				•	173
	(e)	Con	crete	ag	gre	gai	te	sar	n-	
		\mathbf{pl}	es .	•		•		•		173
112.	Relativel	y uno	listur	bed	sa	mĮ	ples	s.		173
	(a)	Pene	etratio	on a	san	ıpl	es			173
	(b)	Han	d-cut	sar	npl	es				175
	(c)	Rock	core	5.	•	•	•	÷	•	179
	H. LC	GGIN	IG OF	EX	PLC	RA	TIC	SNS	5	
113.	Identifica	tion	of ho	les				•		185
114.	Log form	is .					•	•	•	186
115.	Descripti	on of	soils							189
116.	Descripti	on of	rock	co	res	•	•		•	191
	I. FIEL	D AN	D LAB	OR	ATC	DRY	' TE	STS	5	

117.	General	•	•				•				•	
------	---------	---	---	--	--	--	---	--	--	--	---	--

Chapter V—Foundations and Construction Materials—Continued

I. FIELD AND LABORATORY TESTS—Continued	
Section Page	e
118. Field permeability tests 198	3
(a) General 193	3
(b) Open-end tests 193	3
(c) Packer tests 195	5
119. Density-in-place tests	;
(a) Sand density method 196	;
(b) Method for dry, gravel-	
free soils	ł
120. Laboratory tests on soils	
(a) Gradation	
(b) Water content	
(c) Atterberg limits	
(d) Specific gravity	
(e) Proctor compaction 201	
(f) Relative density 201	
121. Laboratory tests on riprap and con-	
crete aggregate 203	
(a) Specific gravity and ab	
sorntion 202	
$(b) Abrasion \qquad \qquad$	
$(c) Soundnoss \qquad $	
$(0) \text{boundless} \dots \dots 203$	
J. BIBLIOGRAPHY	

122. Bibliography .		•	•	•	•	•	•		204
---------------------	--	---	---	---	---	---	---	--	-----

Chapter VI—Earthfill Dams

A. INTRODUCTION

123. Origin and development	205
124. Scope of discussion	205
125. Selection of type of earthfill dam.	207
(a) General	207
(b) Diaphragm type	207
(c) Homogeneous type	208
(d) Zoned embankment type.	209
B. DESIGN PRINCIPLES	
126. Design data	210
127. Criteria for design	210
C. FOUNDATION DESIGN	
128. General	911

Chapter VI—Earthfill Dams—Continued

C. FOUNDATION DESIGN-Continued

Section			
129.	Rock fou	ndations	212
130.	Characte	ristics of sand and gravel	
	founda	tions \ldots \ldots \ldots \ldots	219
	(a)	General	219
	(b)	Amount of underseepage .	220
	(c)	Seepage forces	221
131.	Methods	of treatment of sand and	
	gravel	foundations	222
	(a)	General	222
	(b)	Cutoff trenches	223
	(c)	Partial cutoff trenches	225
	(d)	Sheet piling cutoffs	225
	(e)	Cement-bound curtain	
		cutoff	225
	(f)	Slurry trench cutoff	226
	(g)	Grouting	231
	(h)	Upstream blankets	231
	(i)	Downstream embankment	
		zones for pervious foun-	
		dations	232
	(j)	Toe drains and drainage	
		$trenches \ldots \ldots$	236
	(k)	Pressure-relief wells	23
132.	Designs	for sand and gravel foun-	
	dation	s	233
	(a)	General	23
	(b)	Case 1—Exposed pervi-	
		ous foundations of shal-	0.4
		low depth	24
	(c)	Case 1—Exposed pervi-	
		ous foundations of in-	0 4
		termediate depth	. 24
	(d)	Case 1-Exposed pervi-	
		ous foundations of great	04
		depth	24
	(e)	Case 2-Covered pervi-	о <i>л</i>
	()	ous foundations	24
	(f)	Summary of pervious	94
		foundation treatments	24
133	. Methods	s of treatment of silt and	91
	clay 1	oundations	24 94
	(a)	Getweeted foundations	24 97
	(b)	Deletively dry founde	44
	(c)	tiong	21
			24 24

XIII

Chapter VI—Earthfill Dams—Continued

C. FOUNDATION DESIGN—Continued

Page Page Section 134. Designs for silt and clay founda-249 tions 249(a) Saturated foundations . (b) Relatively dry founda-250tions D. EMBANKMENTS 254135. Fundamental considerations . . . 257136. Pore-water pressure 137. Seepage through embankments . . 258259138. Stability analyses 139. Embankment design 260(a) Utilization of materials from structural excava-260tion (b) Embankment slopes, gen-261 eral 262 (c) Diaphragm type (d) Homogeneous type . . . 2642 264 (e) Zoned embankment. . . 140. Seismic design 2686 7 E. EMBANKMENT DETAILS $\mathbf{270}$ 141. Crest design 9 270(a) General g 270(b) Width . . . 270(c) Drainage 270(d) Camber 1 . 271(e) Surfacing 271(f) Safety requirements . . 271(g) $Zoning \ldots \ldots$ $\mathbf{2}$ 271(h) Typical crest details . . 271142. Freeboard 143. Upstream slope protection . . . 2743 274(a) General \ldots \ldots (b) Selection of type of pro-4 tection \ldots \ldots \ldots 274275 (c) Dumped rock riprap . . 15 279 (d) Hand-placed rock riprap 279 (e) Concrete paving . . . 6 280 (f) Soil-cement 6 281144. Downstream slope protection . . 6 282 145. Surface drainage 146. Flared slopes at abutments . . . 28317

by a hyphen, such as GW–GC.

If the percentages of gravel and sand sizes in a coarse-grained soil are nearly equal, the classification procedure is to assume that the soil is a gravel and then continue on the chart until the final soil group, say GC, is reached. Since it could have been assumed that the soil is a sand, the correct field classification is GC-SC, because the criteria for the gravel and sand subgroups are identical. Similarly, within the gravel or sand groupings, boundary classifications such as GW-GP, GM-GC, GW-GM, SW-SP, SM-SC, and SW-SM, can occur.

Proper boundary classification of a soil near the borderline between coarse-grained and fine-grained soils is accomplished by classifying it first as a coarse-grained soil and then as a fine-grained soil. Such classifications as SM-ML and SC-CL are common.

Within the fine-grained division, boundary classifications can occur between low-liquidlimit soils and high-liquid-limit soils as well as between silty and clayey materials in the same range of liquid limits. For example, one may find ML-MH, CL-CH, and OL-OH soils; ML-CL, ML-OL, and CL-OL soils; and MH-CH, MH-OH, and CH-OH soils.

(c) Laboratory Classification.—Although most classifications of soil will be done visually and by simple hand tests, the Unified Soil Classification System has provided for precise delineation of the soil groups by mechanical analyses and Atterberg limits tests in the laboratory. Laboratory classifications are often performed on representative samples of soils which are being subjected to extensive testing and to verify field classifications when used in the design of small dams. Laboratory classification can be used to advantage in training the field classifier of soils to improve his ability estimate to percentages and degrees of plasticity.

The grain-size curve is used to classify the soil as being coarse-grained or fine-grained, and if coarse-grained, into gravel or sand by size, using the 50-percent criterion. Within the gravel or sand groupings, soils containing less than 5 percent finer than the No. 200 sieve size are considered "clean" and are then classified as well graded or poorly graded by their coefficients of uniformity and of curvature. In order for a clean gravel to be well graded (GW), it must have both a coefficient of uniformity, C_u , greater than 4 and a coefficient of curvature, C_c , between 1 and 3; otherwise, it is classified as a poorly graded gravel (GP). A clean sand having both C_u greater than 6 and C_c between 1 and 3 is in the SW group; otherwise, it is a poorly graded sand (SP).

Laboratory classification criteria for coarsegrained soils and for fine-grained soils are given in the Soil Classification Chart, figure 56.

94. Engineering Characteristics of Soil Groups. -(a) General.—Although there is no satisfactory substitute for actual testing to determine the important engineering properties of a particular soil, approximate values for typical soils of each classification group can be given as a result of statistical analysis of existing infor-The attempt to put soils data into mation. quantitative form involves the risk of (1) the data not being representative, and (2) use of the values in design without adequate safety factors. For the design of small dams, however, where investigation has disclosed no complex problems, expensive laboratory tests of permeability, shear, and consolidation of soils appear unwarranted and the use of average values of these properties is permissible. Since the values pertain to the soil groups, proper soil classification becomes of vital importance. Verification of field identification by laboratory gradation and Atterberg limits tests should be made on representative samples of each soil group encountered.

Table 8 is a summary of values obtained on more than 1,500 soil tests performed in the engineering laboratories of the Bureau of Reclamation in Denver, Colo., arranged according to the main soil classification groups and two frequently occurring boundary groups. The data for this table were obtained from reports for which laboratory soil classifications were The large majority of soils were available. from the 17 western States of the United States in which the Bureau operates; however, some foreign soils were included. Although the sampling area of the soils tested is limited, it is believed that the Unified Soil Classification System is relatively insensitive to geographical

Foundations and Construction Materials

distribution. The procedure for determining which of many submitted samples should be tested is in itself conducive to obtaining a representative range of values, since samples were selected from the coarsest, finest, and average soil within a potential source.

For each soil property listed, the average and its 90 percent confidence limits are given where sufficient data were available to determine them. Since all laboratory tests, except large-sized permeability tests, were made on the minus No. 4 fraction of the soil, data on average values for the gravels are not available for most properties. However, an indication as to whether these average values will be greater than or less than the average values for the corresponding sand group is given in the table. The averages shown are subject to uncertainties that arise from sampling fluctuations, and they tend to vary from the true averages more widely if the number of observations is small. The plus or minus limits given are determined mathematically from the number of observations and from the standard deviation of the data used to determine the average. These limits imply that the true average, obtained by securing and testing more and more samples under the same essential conditions, lies within the plus or minus values 9 chances

out of 10 [4].

The values for Proctor maximum dry density and optimum water content were obtained by tests described in section 120. The other properties are based on tests made on samples compacted to Proctor maximum dry density at optimum water content. The value of void ratio, e_o , is the ratio of the portion of the volume of the soil mass occupied by water and air to the volume of the soil grains. It is derived from the Proctor maximum dry density and the specific gravity of the grains. The MH and CH soil groups have no upper boundary of liquid limits in the classification; hence, it is necessary to give the range of those soils included in the table. The maximum liquid limits for the MH and the CH soils tested were 81 and 88 percent, respectively. Soils with higher liquid limits than these will have inferior engineering properties.

(b) *Permeability.*—The voids in the soil mass provide passages through which water may move. Such passages are variable in size and the paths of flow are tortuous and interconnected. If, however, a sufficiently large number of paths of flow are considered as acting together, an average rate of flow for the soil mass can be determined under controlled conditions that will represent a property of the

.	Proctor co	mpaction			Compr	essibility	Shearing strength			
Soil classifi- cation group	Maximum dry density in pounds per cubic foot	Optimum water content, percent	Void ratio, e.	Permeability, k, feet per year	@ 20 p.s.i., percent	@ 50 p.s.i., percent	<i>C</i> , p.s.i.	C _{sat} p.s.i.	$ an \phi$	
GW	>119	<13. 3	(*)	27,000± 13,000	<1.4	(*)	(*)	(*)	>0. 79	
GP	>110	<12. 4	(*)	64, 000 <u>+</u> 34, 000	<0.8	(*)	(*)	· (*)	>0.74	
GM	>114	<14.5	(*)	>0.3	<1.2	<3.0	(*)	(*)	>0.67	
GC	>115	<14.7	(*)	>0.3	<1.2	<2.4	(*)	(*)	>0.60	
SW	119±5	13.3±2.5	0.37±*	(*)	1.4±*	(*)	5.7 ± 0.6	(*)	0.79 ± 0.02	
SP	110 ± 2	12.4±1.0	0.50±0.03	>15.0	0.8 ± 0.3	(*)	3.3±0.9	(*)	0.74 ± 0.02	
SM	114±1	14.5 ± 0.4	0.48 ± 0.02	7.5±4.8	1.2 ± 0.1	3.0 ± 0.4	7.4 ± 0.9	2.9 ± 1.0	0.67 ± 0.02	
SM-SC	119±1	12.8 ± 0.5	0.41 ± 0.02	0.8±0.6	1.4 ± 0.3	2.9 ± 1.0	7.3 ± 3.1	2.1 ± 0.8	0.66 ± 0.07	
SC	115±1	14.7±0.4	0.48 ± 0.01	0.3±0.2	1.2 ± 0.2	2.4 ± 0.5	10.9 ± 2.2	1.6 ± 0.9	0, 60±0, 07	
ML	103±1	19.2 ± 0.7	0.63 ± 0.02	0.59 ± 0.23	1.5 ± 0.2	2.6 ± 0.3	9.7 ± 1.5	1.3±*	0.62 ± 0.04	
ML-CL	109 <u>+</u> 2	16.8 \pm 0.7	0.54±0.03	0.13±0.07	1.0 ± 0.2	2.2 ± 0.0	9.2 ± 2.4	3.2±*	0.62 ± 0.06	
CL	108±1	17.3 ± 0.3	0.56±0.01	0.08 ± 0.03	1.4 ± 0.2	2.6 ± 0.4	12.6 ± 1.5	1.9 ± 0.3	0.54 ± 0.04	
OL	(*)	(*)	· (*)	(*)	(*)	(*)	(*)	(*)	(*)	
мн	82±4	36. 3±3. 2	1.15 ± 0.12	0.16 ± 0.10	2.0 ± 1.2	3.8 ± 0.8	10.5 ± 4.3	2.9 ± 1.3	0.47 ± 0.05	
CH	94 <u>+</u> 2	25.5 ± 1.2	0.80±0.04	0.05 ± 0.05	2.6 ± 1.3	3.9±1.5	14.9 ± 4.9	$1.6{\pm}0.86$	0.35 ± 0.09	
он	(*)	(*)	(*)	(*)	(*)	(*)	(*)	(*)	(*)	

TABLE 8.—Average	properties	of soils
------------------	------------	----------

The \pm entry indicates 90 percent confidence limits of the average value.

* Denotes insufficient data, > is greater than, < is less than.

Figure 57. Shear strength of compacted soils. 288-D-2474.

soil. The water movement is called percolation; the measure of it is called permeability; and the factor relating permeability to unit conditions is called the coefficient of permeability, k, which represents the discharge through a unit area at unit hydraulic gradient. The use of k in estimating flow through soils is discussed in section 130(b). There are many units of measurement in common use for expressing the coefficient of permeability. The one used in table 8 is feet per year, or cubic feet per square foot per year at unit gradient. One foot per year is virtually equal to 10^{-6} centimeters per second.

The coefficient of permeability of natural soil deposits ranges from 1 million feet to 0.001 foot per year. In many soil deposits the permeability parallel to the bedding planes may be 100 or even 1,000 times as large as the permeability at right angles to the bedding planes. Permeability in some soils is very sensitive to small changes in density, water content, or gradation. Because of the possible wide variation in permeability, a numerical value of k should be considered only as an order of magnitude. It is customary to describe soils with permeabilities less than 1 foot per year as impervious; those with permeabilities between 1 and 100 feet per year as semipervious; and soils with permeabilities greater than 100 feet per year as pervious. These values, however, are not absolute for the design of dams. Successful structures have been built whose various zones were constructed of soils with permeabilities not within these respective ranges.

(c) Compressibility.—Two values are given for compressibility: the value at 20 pounds per square inch effective stress, and the value at 50 pounds per square inch effective stress. These values are for confined compression with drainage permitted. In the confined compression test the soil is prevented from moving laterally by the sides of the container. Porous stones on the top and the bottom permit the water and air in the compacted specimens to drain under

Foundations and Construction Materials

The value recorded is the percentage the load. reduction of initial volume at equilibrium under the applied vertical stress. The phenomenon of compressibility is associated with changes in volume in the voids and only to a very limited extent with changes in the solid particles. If the voids are to a large extent filled with air, the addition of a load on the soil mass will result in compression almost immediately. If, on the other hand, the voids are very nearly or completely filled with water, very little or no compression will take place immediately upon application of the load, and only as the water drains from the soil mass will consolidation take place. If the water can drain readily from the soil mass, consolidation may take place in a relatively short period of time, but if the soil is very impervious and the soil mass is large, complete consolidation may require many years.

(d) Shear Strength.—Three different values are given for the soil groups under this heading: C_o , C_{sat} , and $\tan \phi$. The values of C_o and $\tan \phi$ are the vertical intercept and the slope, respectively, of the Mohr strength envelope on an effective stress basis. The Mohr plot is shown in figure 57. The Mohr strength envelope is obtained by testing several sealed specimens of soil, at the Proctor maximum dry density and optimum water content, in a triaxial shear machine in which pore-water pressures developed during the test are measured.

The effective stresses are obtained by subtracting the measured pore-water pressures in the specimen from the stresses applied by the machine. No drainage is permitted during the tests; hence, they are sometimes called unconsolidated quick tests. The value C_{sat} was obtained by preparing a specimen at Proctor maximum dry density and optimum water content, saturating it, and shearing it to failure to obtain the small circle shown in figure 57. The value C_{sat} is the intercept on the vertical axis of a line tangent to the circle having an inclination ϕ .

These values for shear strength are applicable for use in Coulomb's equation:

$$s = C + (\sigma - u) \tan \phi \tag{1}$$

where:

s=shear strength per unit of area, u=pore-water pressure, σ =applied normal stress, tan ϕ is as previously defined, and

C is either C_o or C_{sat} , depending on the water content of the soil.

A discussion of the significance of pore-water pressure in the laboratory tests is beyond the scope of this text. The application of pore pressure measurements to the shear strength of cohesive soils is discussed in reference [17]. The effective-stress principle, which takes the pore-water pressures into account, was used in arriving at recommended slopes given in chapter VI.

D. ROCK CLASSIFICATION

(Adapted from the Army publication, "Geology and its Military Applications" [5])

95. Rocks and Minerals.—(a) Definition and Types.—In a broad sense, rocks are aggregates of minerals. The principal exceptions to this definition are the products of organic decay such as coal, and volcanic glasses such as obsidian. To the engineer the term "rock" signifies firm and coherent or consolidated substances that cannot normally be excavated by manual methods alone. Based on the principal mode of origin, rocks are grouped into three large classes: igneous, sedimentary, and metamorphic. These are discussed in more detail in sections 96, 97, and 98. (b) Mineral Identification.—The physical properties characteristic of a mineral, controlled by its chemical composition and molecular structure, are valuable aids in its rapid field identification. Those characteristics which can be determined by simple field tests are introduced to aid in the identification of minerals and indirectly in the identification of rocks.

Hardness.—The hardness of a mineral is a measure of its ability to resist abrasion or scratching. A simple scale based on empirical tests for hardness has been universally accepted. The 10 minerals selected to form the